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ABSTRACT 

We provide a necessary and sufficient condi t ion on a radial  p robabi l i ty  

measure  # on a symmet r i c  space for which f = f * #, f bounded,  implies 

t h a t  f is harmonic.  In par t icular ,  we ob ta in  a short  and e lementary  proof 

of a theorem of Furs tenberg  which says tha t  if f is a bounded funct ion on 

a symmet r i c  space which satisfies f --- f */~ for some radial  a b s o l u t e l y  

c o n t i n u o u s  p robab i l i ty  measure/~,  then  f is harmonic.  

1. I n t r o d u c t i o n  a n d  p r e l i m i n a r i e s  

Let G be a connected semi-simple Lie group with finite center and K a maximal  

compact  subgroup of G. Let D = G / K  be a symmetr ic  Riemannian space 

where points of D are indentified with the cosets gK and functions on G with 

f(gk) = f(g) Vk E K, are considered as functions o n  D. 

Definition: A function f on D is harmonic if it satisfies I (gK)  = fK f (gkg 'K)dk 

for any g, g '  E G. Tha t  is, the function f admits  the mean value proper ty  with 

respect to every K-orbi t  {kgtK: k E K}, 

It follows immediately  tha t  A f  = 0 for any G-invariant operator  A on D which 

annihilates constants  ([F2], p. 368). 

We say tha t  a measure # on G is radial if #(f(Mgk")) = #(f(g))  for any 

continuous function f on G and any k', k" E K where #(f(g))  = fa  f(g)dp(g). 

A Lie group G with finite center is simple if its Lie algebra is simple. It  is known 

tha t  every semi-simple Lie group G with finite center is an almost  direct p roduc t  

of a finite number  of simple Lie groups. Tha t  is, G = G1 x G2 x - .. x GN where 

Gi are simple, G i CI G j  is finite and gigj = gjgi for any gi E Gi, gj E Gj, i • j. 

Received November 16, 1997 and in revised form July 10, 1998 

265 



266 Y. WEIT Isr. J. Math. 

For g E G, let (g)i denote the i ' th  component of g. 

A by now classical result of Furstenberg says that  if f is a bounded function on 

D which satisfies the mean value property with respect to a given radial measure 

/z, then f is harmonic (fEll and IF21 Theorem 5 (c) --+ (d)). More precisely, 

FURSTENBERG'S THEOREM: irf/z iS a radial absolutely continuous probability 

measure on G and f is a bounded function on D which satisfies 

f(g) = / a  f(gg')d#(g') Vg • G, (1) 

then f is harmonic on D. 

The result is a main step in the study of the Poisson formula for harmonic 

functions on symmetric spaces. 

For the proof, Furstenberg uses probabilistic methods and his main tool is 

the theory of martingales. He establishes a more general result (Theorem 3.1 in 

[F1]) which enables him to study the solutions of (1) (The so-called p-harmonic 

functions) for measures tt which are not necessarily radial. 

Our main purpose is to provide an elementary "Abelian" proof of Fursten- 

berg's  theorem. The essential point is the commutativi ty of the algebra of radial 

measures under convolution on G. Our proof enables us to give a necessary and 

sufficient condition for a radial probability measure # to characterize harmonic 

functions on D. 

Our main result is the following: 

THEOREM: Let G = G1 x G2 x . . .  x GN be a decomposition of a semi-simple Lie 

group G of finite center into simple components. Let # be a radial probability 

measure on G. Then every bounded function f on D = G / K  which satisfies (1) 

is harmonic if, and only if, the following holds: the semi-group generated by the 

double-cosets Kg~K in Supp(#) is equal to G. 

(2) Equivalently, for ever)- j ,  for which G i is non-compact, there exists a 

double-coset K g ' K  in Supp(#) such that (g')j q~ Kj ,  where Kj is a maximal 

compact subgroup of Gj. 

In particular, i f #  is a b s o l u t e l y  c o n t i n u o u s  then # satisfies (2), and Fursten- 

berg's Theorem follows. 

We shall need some more notation. Let d(grK, g"K) denote the distance 

between the points g~K, g"K • D with respect to a fixed group invariant 

Riemannian metric on D. A function f on D is radial if 

f ( k g K )  = f (gK)  for any k e K. 
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Let fig, denote the K-invariant normalized measure on the K-orbit  

{kgtK: k E K} in D. Hence, 

(f) -- f f(kg'g)dk gg 

and £ 
(f * #g,)(gK) = ]K f(gkg'K)dk where #g,(g) ~ - -  ]~gt (g--1) .  

If f is radial, then convolution by #9' is a "radial translate" of f in the sense 

that f * #o' is also radial and ( f  * #9,)(K) = f(g'K). Fhrthermore, for radial 

functions f we have 

(3) ( f  * #g~)  ,i~ ~g~ = ( f ,  #g~).  #g~. 

For G = SL(n, IR) it follows easily, by induction on n, that the semi-group 

generated by any single double-coset KgtK where gt ~ K,  K = SO(n), is equal 

to G. That  is, the union of the sets K, Kg~K, Kg~Kg'K,... is equal to G/K. It 

can be shown that  this property is shared by any simple Lie group. Consequently, 

for G -- G1 x G2 × " "  x GN, Gi simple, the semi-group generated by any single 

double-coset Kg'K, where (g')j f~ Kj for all j for which Gj is non-compact, is 

equal to G. 

Remark: It is convenient to consider K-orbits as Riemannian spheres 

{gK: d(gK, K) = R}, which are exactly the same for groups of rank one. How- 

ever, in the higher rank case, K-orbits are far from being spheres. Actually, in 

this case, each sphere with R > 0 is an uncountable union of disjoint K-orbits. 

2. The  proof  of  the  theorem 

We first claim that if equation (1) has a non-harmonic solution, then it also has 

a radial non-constant solution. Indeed, if f is non-harmonic then 

f(goK) 7 ~ /g  f(gokg'K)dk for some g0,g' C G. 

Let H(gK) = fg f(gokgK)dk. Then H is a radial function which satisfies (1) 

since the space of solutions of (1) is left translation invariant, and H(K) ¢ 
H(g'g). 

We can thus assume that  f is a radial real-valued, bounded solution of (1) and 

we need to show that f is constant. By convolving both sides of (1) by a radial 

integrable function we may further assume that  f is uniformly continuous on D. 
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Let fg, = f • #g, - f for some fixed g'  E G. Suppose that  SUPD fg, = a > 0 

and let gnK C D be such that  

lim I~'(gnK) = a. 
n - - ~ o o  

Let fn,g, = fg, * #g..  The sequence f,~,~, is uniformly bounded and equicontin- 

uous. Consequently, by Ascoli's theorem there exists a subsequence fnk,g' that  

converges uniformly on compact sets to f0 where fo(K) = a and fo(gK) <_ a, 

Vg E G. Since f0 satisfies (1) we deduce that f0 = a on all sets of the form 

Kgll, K ,  ,, ,, ,, . ,, . . .  . . g n K . .  . #, Kg 1 Kg 2 K, , Kg 1 K for Kg}'K in the support  of which 

by (2) is equal to D. Hence f _= a on D. Let ~ be a positive integer and let BeR 

denote the bali {gK: d(K, gK) <_ ~R} where d(K, g'K) = R. 

Let N be a positive integer for which fN,g' > a/2 on Ben, and let T = f * #gN" 

By (3), we have fN,g' = ( f  * #gN) * #9' -- f * #~N = T * #g, - T, and we know 

that  fg,g' (K) = (T * #9,)(K) - T ( K )  > a/2. 

Since T is radial, (T * #g,)(K) = T(g'K).  But g'K C BeR, implying that  

fg,~,(g'K) = (T * #g,)(g'K) - T(g'K) = fK T(g'kg'K)dk - T(g 'K)  > a/2. 

Hence, for some kl E K 
a 

T ( g ' k l g ' K ) -  T(g 'K)  > -~. 

Let g~ = g'klg'. Since g~K C Ben, we have T(g'2K ) > T(g 'K)  + a/2 > 

T (K)  + a. 

I K By iteration, we can find g'K, g2 , . . . ,  geK in Ben such that  
a 

T(g~K) > T(g~_IK ) + ~ > T(g~_2K ) + a > . . .  > T (K)  + ~a. 

Since g is arbitrary, it follows that  fg, ~ 0 for all g' E G, implying that  f is 

constant, which proves the "if" part  of the theorem. 

To prove the necessity of the condition, suppose that  for every double-coset 

K g ' K  in Supp(#) we have (g')l E K1 :fi G1. Then every function f (g) = 

f (g l ,  g2 , . . . ,  gN) on D, which is constant as a function of g2 " ' 'gg  for every fixed 

gl, satisfies (1) but is not necessarily harmonic. This proves the "only if" part  

and the proof of the theorem is completed. 

Remark: Our proof generalizes Furstenberg's result for locally compact 

separable unimodular groups G and radial probability measures # which satisfy: 

(i) (G, K) ,  where K is a compact subgroup of G, is a Gelfand pair. Tha t  is, 

the algebra of K-bi-invariant integrabte functions on G is commutative.  

(ii) The semi-group generated by Supp(tt) is dense in G. 
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